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We analyze in which experimental conditions the concept of electrical impedance is useful for an electrolytic
cell. The analysis is performed by solving numerically the differential equations governing the phenomenon of
the redistribution of the ions in the presence of an external electric field and comparing the results with the ones
obtained by solving the linear approximation of these equations. The control parameter in our study is the
amplitude of the applied voltage, assumed a simple harmonic function of the time. We show that the bulk
distribution of ions close to the electrodes differs from the one obtained by means of the linear analysis already
for small amplitudes of the applied voltage. Nevertheless, the concept of electrical impedance remains valid.
For larger amplitudes, the current in the circuit is no longer harmonic at the same frequency of the applied
voltage. Therefore the concept of electrical impedance is no longer meaningful.
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I. INTRODUCTION

The impedance spectroscopy technique is a powerful
method for characterizing several electrical properties of me-
dia �1�. According to this technique, a sample of the material
to be characterized is submitted to an external electrical volt-
age of amplitude V0 and frequency f =� / �2�� and the elec-
trical current in the external circuit, I, is measured. By as-
suming that the system is linear, the current I is harmonic as
the applied voltage and the amplitude of the current is pro-
portional to V0 �2,3�. In this framework, the electrical imped-
ance Z, defined as the applied voltage divided by the current,
is independent of the amplitude of the applied voltage. From
the analysis of the frequency dependence of Z it is possible
to deduce the equivalent dielectric constant and equivalent
conductivity �4�, or the real and imaginary parts of the com-
plex dielectric constant �5�, of the sample under consider-
ation. These quantities are not molecular properties of the
material to be investigated, but depend, usually, on the thick-
ness of the sample. The true phenomenological parameters
characterizing the medium from the dielectric point of view
are then derived by means of a theoretical model �6�.

The impedance spectroscopy technique is based on the
fundamental assumption that the system behaves as a linear
system �7�. Only in this case the concept of electrical imped-
ance can be defined. When the system behaves nonlinearly,
even if the applied voltage is harmonic, the electrical current
in the circuit contains all the harmonics of higher order. The
presence of second- and third-order harmonics is responsible
for a deviation from the ellipsoidal shape of the parametric
curve representing the current versus the applied voltage.
Consequently, the electrical impedance depends on the am-
plitude of the applied voltage and on the time. In this case, in

our opinion, it is no longer possible to derive the dielectric
properties of the medium from the analysis of the electrical
impedance only.

Our aim is to investigate under which conditions the con-
cept of electrical impedance can be useful from an experi-
mental point of view. In our analysis we consider the case of
an electrolytic cell �8�. In this case the fundamental equa-
tions describing the redistribution of the ions in the presence
of an external electric field are the continuity and drift-
diffusion equations for the ions and the Poisson equation for
the actual electrical potential �9�. These equations are pre-
sented in Sec. II in their general form. The case in which the
fundamental equations of the problem can be linearized is
also discussed and the concept of electrical impedance intro-
duced. In Sec. III, we compare the numerical solutions for
the bulk densities of the ions and for the electric potential
across the sample with the solutions obtained by means of
the linearized equations. As expected, the two are in good
agreement when the amplitude of the applied voltage is small
with respect to the thermal voltage—i.e., of the order of
25 mV for monovalent ions at room temperature. Increasing
the amplitude of the applied voltage, the agreement is poorer
and poorer.

Nevertheless, the concept of electrical impedance remains
valid for larger amplitudes. According to our analysis this is
due to the fact that the actual bulk density of ions, for inter-
mediate values of the applied voltage, is strongly perturbed
only in two surface layers of thickness comparable with the
Debye length. Since this length, for the usual materials, is in
the submicron scale, the nonlinearity gives a contribution to
the impedance variation of the order of Debye length divided
by and thickness of the sample, hence negligible. Increasing
further the amplitude of the applied potential, the linear ap-
proximation fails in the determination of the current in the
circuit; hence, we doubt the meaning of the electrical imped-
ance, even though in the literature it is often defined up to
quite large values of the applied potential �10–12�.

Finally, in Sec. IV we define a certain number of quanti-
fiers to discuss the deviation of the solution from the linear
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approximation. Also, we introduce the concept of a “gener-
alized” impedance, which corresponds to the electrical im-
pedance in the small-amplitude �linear� limit, and we esti-
mate its behavior as a function of the control parameter
�applied voltage�. We show that the concept of electrical im-
pedance remains good for amplitudes of the applied voltage
well beyond the one for which it is reasonable the agreement
of the bulk density of ions determined numerically and by
means of the linearized equations.

II. THEORETICAL FRAMEWORK

A. General equations

Let us consider a cell in the shape of a slab of thickness d
filled with an electrolyte. We suppose that in thermodynami-
cal equilibrium the density of dissociated ions is N and that
dissociation and recombination are negligible. The ions are
assumed to be identical in all aspects, except for the sign of
the electrical charge q. We assume the same adsorption en-
ergy for positive and negative ions �13,14� and consider per-
fectly blocking electrodes. In this framework, in the absence
of an external electric field, the liquid is locally neutral.
When an external electric field is applied, the ions are redis-
tributed close to the electrodes. The liquid is still globally
neutral, but locally charged. For the description of our sys-
tem we use a Cartesian reference frame having the z axis
perpendicular to the limiting surfaces, located at z= ±d /2.

We indicate by �i� np�z , t� and nm�z , t� the actual density of
positive and negative ions, respectively; �ii� D the diffusion
coefficient of the ions in the host liquid; �iii� KBT the thermal
energy of the ions when the temperature is T; �iv� V�z , t� the
actual electrical potential across the sample.

In the presence of an external field the ions move in the
sample. The current density is given by

jr = − D� �nr

�z
±

q

KBT
nr

�V

�z
� , �1�

where r= p ,m. In Eq. �1� there is the sign + for r= p and −
for r=m. The mobility of the ions is defined as �
=Dq /KBT. The differential equations governing the evolu-
tion of the bulk densities of ions and of the electrical poten-
tial are the conservation law for the number of ions,

�nr

�t
= D

�

�z
� �nr

�z
±

q

KBT
nr

�V

�z
� , �2�

and the Poisson equation �3,15,16�

�2V

�z2 = −
q

�
�np − nm� . �3�

In Eq. �3�, � is the dielectric constant of the pure liquid. We
have indeed assumed that there is not adsorption from the
surfaces; i.e., the ions remain always in the bulk �17�.

We write the actual density of ions, nr, in the form nr
=N+�nr. Since N is the bulk density of ions in the absence
of external potential, �nr represents the perturbation of the
density due to the external electric field. In terms of �nr, Eqs.
�2� and �3� become

���nr�
�t

= D
�

�z
� ���nr�

�z
±

q

KBT
�N + �nr�

�V

�z
� ,

�2V

�z2 = −
q

�
��np − �nm� , �4�

where �nr=�nr�z , t� and V=V�z , t�.
We consider a voltage applied to the cell in the

form of a harmonic function of amplitude V0 and frequency
f =� / �2��: �V�t�=V�d /2 , t�−V�−d /2 , t�=V0 exp�i�t�.
Equations �4� have then to be solved with the boundary con-
ditions

�np�z,0� = �nm�z,0� = 0,

���nr�
�z

±
q

KBT
�N + �nr�

�V

�z
= 0,

V�±d/2,t� = ± �V0/2� exp�i�t� . �5�

The first boundary condition implies the equilibrium of the
cell before the application of the external electric field, and
the second describes perfectly blocking electrodes; i.e., the
current densities vanish for z= ±d /2. The third boundary
condition follows from the assumption that the external
power supply is connected so that the electrodes have oppo-
site electric potential.

The system of equations �4� and �5� is nonlinear for the
presence of the term �N+�nr���V /�z� in the equations of
continuity. Consequently, even if the applied electrical volt-
age is harmonic, �nr�z , t� and V�z , t� contain all higher-order
harmonics.

B. Linear analysis

A weak external electric field produces only a weak per-
turbation of the bulk densities of ions—i.e., �nr�N. In this
case it is possible to linearize Eqs. �4� and �5� and the bulk
differential equations and boundary conditions become

���nr�
�t

= D
�

�z
� ���nr�

�z
±

qN

KBT

�V

�z
� ,

�2V

�z2 = −
q

�
��np − �nm� , �6�

and

���nr�
�z

±
qN

KBT

�V

�z
= 0, for z = ± d/2,

V�±d/2,t� = �V0/2� exp�i�t� , �7�

respectively. Equations �6� and �7� are now linear. Conse-
quently, if the applied voltage is harmonic, �nr�z , t� and
V�z , t� are harmonic too. In this case, as it has been shown in
�18�, �nr�z , t� and V�z , t� are given by

�nr�z,t� = �r�z� exp�i�t� ,
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V�z,t� = 	�z� exp�i�t� , �8�

where

�r�z� = ± p0 sinh�
z� ,

	�z� = − 2
q

�
2 p0 sinh�
z� + cz , �9�

with + for r= p and − for r=m. The constants p0 and c
appearing in Eqs. �9� are given by �18�

p0 = −
Nq


2KBT

1

�1/�2
� sinh�
d/2� + i��d/2D� cosh�
d/2�
V0,

c = i
�

D

cosh�
d/2�
�1/�2
� sinh�
d/2� + i��d/2D� cosh�
d/2�

V0,

�10�

where �=	�KBT / �2Nq2� is the Debye length �15� and


 =
1

�
	1 + i

�

D
�2. �11�

The electric field is given by E=−�V /�z. It follows that
E�z , t�=−	��z� exp�i�t�, where the prime means derivation
with respect to z. In particular, the surface electric field is
E�d /2 , t�=−	��d /2� exp�i�t�. By means of the Gauss theo-
rem, the surface density of charge sent by the power supply
on the electrode can be calculated as ��t�=−�E�d /2 , t�. The
total surface electric charge is Q=�S, where S is the surface
area of the electrodes. The complex electrical current in the
external circuit is I=dQ /dt. Using the results reported above
we obtain

I�t� = i��S�− 2
q

�

p0 cosh�
d/2� + c� exp�i�t� . �12�

The electrical impedance of the cell, defined as Z
=�V�t� /I�t�, is

Z = − i
2

��
2S
� 1

�2

tanh�
d/2� + i

�d

2D
� . �13�

The linear analysis presented above is valid as far as

�nr�z , t� 
 �N, because only in this case nr�z , t�=N
+�nr�z , t� can be approximated by N, as stated above. By
taking into account Eqs. �8�–�10� the condition 
�nr�z , t� 

�N is equivalent to

V0 � U = VT� 1

�2
2 + i
�d

2D

coth�
d

2
�� , �14�

where VT=KBT /q is the thermal voltage of the order of
25 mV for monovalent ions at room temperature.

We conclude that the linearized solution of the equation
governing the phenomenon of the ions redistribution in the
presence of an electric field holds only if the amplitude is
negligible with respect to the amplitude U defined by Eq.
�14�. From this equation it follows that in the limit �→0,
U→VT, as expected �1�. In the opposite limit where �→,
U diverges as 	�. This divergence is not surprising. In fact,

for large � the ions cannot follow the rapid variations of the
applied voltage and the medium behaves as a true dielectric
material.

The existence of an intrinsic voltage U in the problem is
important from a basic point of view, as it has been recently
discussed in different situations �19�. However, from a prac-
tical point of view, it is fundamental to know when U is
relevant for the determination of the error performed in the
measurements of impedance spectroscopy. In particular, it is
relevant to determine when it is no longer possible to linear-
ize the equations of the problem, with the resulting depen-
dence of the electrical impedance on the amplitude of the
applied voltage and on the time.

C. Numerical solution

As an alternative to the linearized solution presented in
the previous subsection, the complete set of nonlinear equa-
tions can be solved numerically. Here, we use, as reported
elsewhere �9�, a finite-difference �FD� approach �20–22�. We
have adopted the usual discretization of both time and space
and applied an explicit forward scheme to define both space
and time derivatives. The boundary conditions have been
implemented as usually performed in diffusion problems
�23�.

The convergence �21,24� of the proposed scheme has
been verified by comparing the numerical solution with the
linear approximation at the lower amplitude of the applied
voltage. Furthermore, to test convergence also at larger driv-
ing amplitudes, we have verified that the solution is not de-
pendent on the steps chosen for both space and time discreti-
zation. Finally, the conservation of the total number of ions
has been checked at each step of the simulations. As a result
of the convergence tests, simulations have been performed
using a space step of 0.0625 �m. The time step has been
chosen differently for the various frequencies and always
smaller than 0.05 ms. Each period of the applied forcing has
to be described by a sufficient number of points �at least 500
here� �25�.

III. DEVIATIONS FROM THE LINEAR REGIME
FOR INCREASING APPLIED VOLTAGES

The concept of electrical impedance, as defined in Sec.
II B, is meaningful only for a linear system. It is then impor-
tant to define under which conditions the linear approxima-
tion of the evolution equations is a reasonable assumption. In
particular, here we are interested in analyzing the role of the
control parameter, which has been chosen to be the ampli-
tude of the applied potential V0. To this purpose, in this sec-
tion we present a comparison of the numerical results with
that obtained from the analytical solution for the linearized
case.

For the analysis, we have considered parameters typical
of a commercial liquid crystal: monovalent ions �q=1.6
�10−19 A s�, N=4.2�1020 m−3, T=300 K, �=6.7�0, D
=8.2�10−12 m2/s, d=25 �m, and S=2�10−4 m2 �26�.
With these parameters, the Debye length is ��0.1 �m. Fur-
thermore, V0 is chosen in the range from 0.1 mV to 5 V, to
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cover the wide excursion usually reported in experiments
both for low and high voltages �10–12�. Angular frequency is
fixed to �=10 rad/s. In the next section, under the same
experimental conditions, frequency will be varied.

A. Results

In Figs. 1 and 2, we compare the numerical solution for
the positive-ion distribution with the one obtained from the
linear analysis. To this purpose we introduce the function
fp�z , t�=�np�z , t� /N=np�z , t� /N−1—i.e., the unbalance in the
ions distribution. First, in Fig. 1 we plot fp�z=−d /2 , t�—i.e.,
the temporal evolution for a point close to the electrode. In
the four plots it is clear how the numerical solution �solid
line�, after a brief transient, reaches very rapidly a stationary
condition. Therefore, after one cycle, it is already possible to
compare it with the linearized solution �dotted line� which
does not describe transient conditions. As expected, the
agreement is very good for V0=0.1 mV, but differences al-
ready appear at 25 mV. Note that here �np is about 20% of
N—i.e., already relatively large for justifying the linear ap-
proximation. For larger amplitudes the two solutions rapidly
diverge. The rectification effect, an indication of the presence
of higher-order harmonics, is absolutely lost in the linearized
solution, which, indeed, predicts unphysical negative values
for np. It is interesting to observe the delay of the numerical
solution at 5 V.

The profiles fp�z , t= t0� at fixed time are analyzed in Fig. 2
for t0=1.6 s and t0=1.9 s—i.e., close to one maximum and
one minimum, respectively, of the number of ions close to
the electrodes �see Fig. 1�. The distribution of ions is per-
turbed only up to a distance comparable with the Debye
length �0.1 �m�. In this region, the numerical and linearized
solutions rapidly diverge with increasing applied potential.
Note that the distribution of ions in the bulk is, at any time,
almost not modified by the presence of the external field
�except that at 5 V�. Hence the agreement between the two
solutions is always very good �not reported for brevity�.

Similar is the agreement found when analyzing the poten-
tial. Both the temporal evolution �Fig. 3� close to the center
V�z=−d /10, t� and the profile �Fig. 4� at selected times
V�z , t= t0� indicate the validity of the linearization procedure
for small amplitudes of the applied potential. In both Figs. 3

FIG. 1. Temporal evolution of the positive-ion density close to
the electrode surface for different values of the applied potential.
The numerical solution �solid line� is compared with the linear ap-
proximation �dotted line�.

FIG. 2. Profile close to the
electrode surface of the positive-
ion distribution at different times
for different values of the applied
potential. The numerical solution
�solid line� is compared with the
linear approximation �dotted line�.
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and 4, distortions at 5 V are particularly evident. A shift
similar to the one observed in Fig. 1 is again visible. The
analysis of such a shift and the approximately � /2 delay
between fp and V will be discussed elsewhere �27�.

Finally, in Fig. 5 we report the current I in the circuit as a
function of time �first column� and the parametric represen-

tation in the plane (�V�t� /V0 , I�t� / I0), where �V�t�
=V0 sin��t� is the applied potential and I0 corresponds to the
maximum of I�t� �real part of the current�. In the linear limit
I�t�= I0 sin��t−��; it follows the parametric representation of
an ellipse: x=�V�t� /V0=sin��t� , y= I�t� / I0=sin��t−�� ro-
tated of 45° with respect to the Cartesian axes and indepen-
dent from the applied potential. Any deviation is then a good
indication of the nonlinearity of the system.

In the first column of Fig. 5 we can observe again the
deviation of the numerical solution from the linear approxi-
mation with increasing the applied voltage. Even more sig-
nificant is the deviation of the solution from the elliptical
form, as reported in the right column of Fig. 5. Perfect agree-
ment is found up to 25 mV. For larger V0, first the shape
remains an ellipse, with only slight distortions �0.5 V�. For
large voltages �5 V�, higher-order harmonics are relevant in
the solution and more complicated Lissajou figures start ap-
pearing.

B. Discussion

Nonlinear effects are always present in the system, and
their contributions to the solution increase continuously with
increasing V0. The linear analysis reported in Sec. II B sug-
gests that the linearization of the system is valid as far as
�np�N—i.e., for applied potentials close to the thermal
range �25 mV�. The results reported here seem to confirm
only partly such an analysis. Indeed, for local variables, such
as the density of positive ions, the first distortions appear at
V0=25 mV, albeit still small, when �np is already quite large
�see Fig. 1�.

Quite surprisingly, the linear approximation is more ro-
bust for global variables, such as the current I �see Fig. 5�.
Here, linearization remains valid up to 0.5 V, where �np
�15N. Nevertheless, as we have shown, in the range
50 mV�V0�1 V �for the chosen frequency�, the presence
of the external voltage perturbs considerably the ion distri-
bution only close to the electrodes—i.e. on a surface layer of
thickness of the order of a few Debye lengths. The linear
approximation for the ion distribution still works very well in

FIG. 3. Temporal evolution of the actual potential in a point
close to the center of the specimen for different values of the ap-
plied potential. The numerical solution �solid line� is compared with
the linear approximation �dotted line�.

FIG. 4. Profile along the speci-
men of the actual potential at dif-
ferent times for different values of
the applied potential. The numeri-
cal solution �solid line� is com-
pared with the linear approxima-
tion �dotted line�.
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the bulk of the material. As a consequence, the effects on the
electrical current is of the order of the ratio between the
Debye length and the layer thickness—i.e., very small. It
follows that the electrical current remains harmonic as in the
linear case.

Increasing further the applied voltage—e.g., larger than
1 V, the distribution of ions is perturbed in all the sample.
Consequently deviations from the linear solution appear also
for the electrical current �see, e.g., results at 5 V�.

IV. ANALYSIS OF THE CONCEPT
OF ELECTRIC IMPEDANCE

A. Quantifiers

The results reported in the previous section indicate that
the system behaves “reasonably” linearly only up to some
applied voltage. Nevertheless, they do not allow us to define

this “threshold” voltage VC, nor to analyze its dependence on
parameters, such as the frequency of the applied voltage.

In Fig. 6 we show again the parametric curve �x ,y�
= (�V�t� /V0 , I�t� / I0), as in the second column of Fig. 5. The
applied potential is fixed �V0=0.5 V�, and the distortion from
the elliptical shape is analyzed for different frequencies. The
linear approximation �dots� always predicts an ellipse rotated
of 45° with respect to the axes and width decreasing with
increasing frequency in the range 0–100 rad/s. The numeri-
cal solution deviates considerably from the linearized one,
with distortions decreasing with increasing frequency and
completely disappearing at �=100 rad/s. This constitutes a
preliminary indication that the threshold potential moves to
larger values for higher frequencies, as expected.

The results reported in Fig. 6 suggest that the critical fre-
quency below which nonlinearities due to ionic motion set in
is rather small. This is to be expected. In fact, in a recent

FIG. 5. Comparison of the nu-
merical solution �solid line� with
the one obtained from a linear ap-
proximation of the model equa-
tions �dotted line�. Left column:
temporal evolution of the electri-
cal current for different values of
the applied potential. Right col-
umn: parametric representation of
the normalized current vs the nor-
malized applied potential. Devia-
tions from the ellipse indicate the
presence of high nonlinear effects.

FIG. 6. Parametric representa-
tion of the normalized current
I�t� / I0 vs the normalized applied
potential V�t� /V0 for different val-
ues of frequency and V0=0.5 V.
Deviations from the ellipse indi-
cate the presence of high nonlin-
ear effects.

FREIRE, BARBERO, AND SCALERANDI PHYSICAL REVIEW E 73, 051202 �2006�

051202-6



investigation we have analyzed transient effects in an elec-
trolytic cell submitted to a step like external voltage in order
to determine the relaxation time of the redistribution of the
ions and of the potential �28�. The analysis showed that, in
the limit of external potentials up to 1 V, the relaxation time
is given by �r=�d /2D. It follows that we can consider a
relaxation frequency �r=2� /�r, which for our choice of pa-
rameters is of the order of 40 Hz. In the case considered here
�sinusoidal forcing�, we can therefore expect that ions do not
participate in the dynamics of the system �i.e., absence of
nonlinear effects� as long as ���r. In fact, for large fre-
quencies, the ions response is not fast enough to respond to
the applied field and the system behaves like a pure capaci-
tor.

To quantify the effect, two quantifiers may be introduced.
�i� An indicator for the ions distribution:

�p�z,V0� =
1

T


t

t+T

�fp�z,t�;V0� − fp
lin�z,t�;V0��2dt�, �15�

where T=2� /� is the period and the superscript lin indicates
the solution deduced in the linearized case. The amplitude of
the applied voltage has been explicitly indicated as a control
variable in fp. Considering that the maximum of the devia-
tions are closer to the electrodes, in the following we will
consider z=−d /2.

�ii� An indicator for the electrical current:

�I�V0� =
1

T


t

t+T � I�t�;V0�
I0

−
Ilin�t�;V0�

I0
lin �2

dt�. �16�

This quantity provides an indication of the distortion from
the expected ellipsoidal shape in the parametric representa-
tion described before.

The behavior of the two indicators is reported in Figs.
7�a� and 7�b�, respectively, for different frequencies of the
applied potential. Both figures indicate, as expected, an in-
crease in the deviation from the linear solution with increas-
ing amplitude. In both cases, the contribution of the nonlin-
ear terms is smaller for larger frequencies �at any given
amplitude�, as already remarked before.

Figure 7�a� shows a power-law dependence �p=a1V0
a2.

The coefficient a1 decreases with increasing �, while the
exponent is frequency independent. Note that a value of the
indicator of 0.1 �i.e., a discrepancy of 3% between the nu-
merical solution and the linear approximation� corresponds
to applied voltages ranging from 10 mV to 100 mV, depend-
ing on the frequency. The results show also a small depen-
dence from frequency at low values of �, in agreement with
previous observations �29�.

Deviations from the linear solution increase less rapidly
for the second quantifier �I, reported in Fig. 7�b�. Here it is
interesting to note that, albeit �I increases with continuity as
a function of V0, a threshold voltage is evident, located at
about 50 mV for the smaller frequencies and about 0.8 V for
the higher frequency. This constitutes an indication of the
possibility to individuate a parameter for discriminating be-
tween the linear and nonlinear behaviors of the system, at
least for what concerns its global variables, such as the cur-
rent I.

B. Generalized impedance

The quantifiers introduced in the previous subsection still
have the disadvantage of not being directly related to experi-
mentally detected quantities and variables. More meaningful
is to introduce some quantity directly related to the electric
impedance of the cell. As already remarked, the impedance is
in general defined from the relation between applied poten-
tial and the response of the system in terms of electric cur-
rent: Z=�V /I. As such the impedance is a complex quantity
and, in the linear approximation, its modulus is Z= 
Z 

=V0 / I0.

Unfortunately, when the system is nonlinear, the defini-
tion given for the impedance is no longer meaningful. In
fact, whenever distortions from the linear case appear, Z be-
comes time and amplitude dependent. For this reason, we
propose here the introduction of a generalized electrical im-
pedance ZG which, in the limit of vanishing applied poten-
tial, converges to the value defined in the linear analysis. To
this purpose, we introduce the function

��t;V0� = 2
I2�t;V0�

V0
2 . �17�

FIG. 7. �a� Quantifier for the deviation in the number of ions �p

�see Eq. �15�� vs the amplitude V0 of the applied voltage for differ-
ent values of frequency. �b� Quantifier for the deviation in the cur-
rent �I �see Eq. �16�� vs the amplitude V0 of the applied voltage for
different values of frequency.
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In the linear case �in which V0→0�, the average value of �
gives the square of the modulus of the electric admittance:
Y =1/ 
Z
. In fact, a simple calculation gives

���t;0�� =
1

T


t

t+T

��t�;0�dt� = Y2�0� . �18�

In the general case we can define a generalized admittance
Y�V0� which is dependent on the applied voltage amplitude:

Y2�V0� = ���t;V0�� =
1

T


t

t+T

��t�;V0�dt�. �19�

We then have a definition of a generalized electrical im-
pedance:

ZG�V0� = 1/Y�V0� . �20�

It follows that the quantity

�Z =
ZG�V0� − Z�0�

Z�0�
�21�

provides information about the deviation of the electrical im-
pedance at a given amplitude from the one expected from the
linear analysis.

In Fig. 8�a� we report the generalized impedance as a
function of the applied voltage for different frequencies. As
expected ZG converges to Z for low values of the driving
voltage. The generalized impedance, as the linear one, in-
creases with decreasing frequencies. The dependence of ZG
on V0 is quite large, confirming the inadequacy of a linear
approximation already for low voltages. Also, the depen-
dence is not monotonous. A further analysis of this observa-
tion is currently in progress.

�Z�V0� vs V0 is reported in Fig. 8�b�. The general behav-
ior shows that the error is negligible for low voltages. In-
creasing V0, the linear analysis first overestimates the actual
impedance �negative �Z�, with variations up to 50% �for the
lowest frequencies�. For large voltages, the linear analysis
underestimates the impedance of the system. By changing �
the curve �Z�V0� vs V0 does not change its shape, but it is
shifted to the right and rescaled, indicating an almost linear
behavior up to 7.5 V for �=100 rad/s.

Finally, in Fig. 9 we define a threshold voltage VC. This
quantity is defined as the amplitude of the applied potential
at which 
�Z
 is larger than an assigned precision �, which
may be determined, e.g., by the experimental accuracy. We
suggest that, given �, the linear analysis, hence the tradi-
tional concept of electrical impedance, is valid only for volt-
ages lower than VC. Of course, the threshold voltage depends
on frequency and on the precision required, as reported in
Fig. 9. The general behavior is in agreement with previously
reported predictions, based only on the validity of the linear

FIG. 8. Dependence of the generalized electrical impedance ZG

�see Eq. �20�� on the amplitude of the applied potential. �a� Numeri-
cal results for the value of ZG. The linear approximation predicts a
constant value for the electric impedance, equal to the value as-
sumed by ZG when V0→0. �b� Deviation �Z of the calculated ZG

from its linear approximation �see Eq. �21�� for different
frequencies.

FIG. 9. Threshold potential for the validity of the linear approxi-
mation as a function of frequency. The linear approximation is valid
only for potentials lower than the threshold—i.e., in the region be-
low the curve. The three curves refer to different choices of the
error tolerance � for the electrical impedance. Curves may look
very different if the tolerance is defined on other quantities. In par-
ticular, the curve flattens down when the error is calculated on the
distribution of positive ions, with results similar to that reported in
�18�.

FREIRE, BARBERO, AND SCALERANDI PHYSICAL REVIEW E 73, 051202 �2006�

051202-8



approximation �n�N; i.e., the threshold voltage is in the
thermal range and independent from frequency for low fre-
quencies, while increases almost exponentially at large fre-
quencies. Nevertheless, we remark here that the absolute val-
ues of VC are much larger than the ones previously estimated
�29�. For instance, a threshold potential was estimated of
about 25 mV for low frequencies, while here we have
VC��→0��70 mV. The discrepancy is even larger at high
frequencies. We estimate a threshold potential of the order of
1 V at �=50 rad/s, versus an estimate of 50 mV previously
reported. This result is encouraging, suggesting the validity
of the linear approximation in a range much larger than pre-
viously expected. Nevertheless, it also points out that much
carefulness is needed at large voltages than usually adopted.

V. CONCLUSIONS

We have investigated the redistribution of the ions in an
electrolytic cell submitted to an external harmonic electric
field. We have solved numerically the fundamental equations
of the problem under investigation by considering as electro-
lyte a commercial nematic liquid crystal. The thickness of
the sample has been assumed to be 25 �m, as the ones used
in display technology. Following the standard procedure, we
have also solved the same equations in the linear approxima-
tion, where the presence of the external field produces only a
small variation of the bulk density of ions with respect to the
one in thermodynamical equilibrium, in the absence of an
external field.

By considering the amplitude of the applied voltage as a
control parameter, we have compared the numerical solution
with the one relevant to the linearized equations. We have
analyzed, in particular, the phenomenon in the low-frequency
region ���100 rad/s�. According to our analysis, in the
range in which the amplitude of the applied voltage is of the
order of the thermal voltage, the presence of the external
voltage perturbs the ions distributions only close to the elec-
trodes on a surface layer whose thickness is comparable with
the Debye length. Consequently, the linear approximation
works well in the bulk of the sample. In this framework, the
concept of electrical impedance is useful and the impedance
spectroscopy technique can give useful information on the
dielectric properties of the medium. On the contrary, when
the amplitude of the applied voltage is of the order of 1 V,
the distribution of ions is strongly perturbed in all the
sample. In this case, in the low-frequency range, the concept
of electrical impedance is meaningless and the measurement
by means of impedance spectroscopy methods of the dielec-
tric parameters is questionable. We have also investigated the
role of the frequency in the validity of the linear approxima-
tion. In this case, we have shown that for �=100 rad/s, the
concept of electrical impedance remains valid up to ampli-
tude of the applied voltage of the order of 1 V.
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